Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes
نویسندگان
چکیده
Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g-1 at the current density of 1 A g-1, robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg-1. Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.
منابع مشابه
Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimi...
متن کاملFabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode.
Freestanding and flexible graphene/polyaniline composite paper was prepared by an in situ anodic electropolymerization of polyaniline film on graphene paper. This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength of 12.6 MPa and a stable large electrochemical capacitance (233 F g(-1) and 135 F cm(...
متن کاملCapacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte.
We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very ...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملMnO2 Nanorods Intercalating Graphene Oxide/Polyaniline Ternary Composites for Robust High-Performance Supercapacitors
New ternary composites of MnO2 nanorods, polyaniline (PANI) and graphene oxide (GO) have been prepared by a two-step process. The 100 nm-long MnO2 nanorods with a diameter ~20 nm are conformably coated with PANI layers and fastened between GO layers. The MnO2 nanorods incorporated ternary composites electrode exhibits significantly increased specific capacitance than PANI/GO binary composite in...
متن کامل